Lecture 6
Plan:

1. Definitions
2. Solvatility of systems of inequalities. 3. Linear programming duality.

Definitions
Def (Halfspace): set $\left\{x \in \mathbb{R}^{n}: a^{\top} x \leq b\right\}$ $a \in \mathbb{R}^{n} \quad b \in \mathbb{R}$

$$
a=\binom{1}{1}
$$

$$
b=2
$$

Def(Polyhedron): Intersection of fintels manr half spaces. write

$$
\begin{gathered}
P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\} \\
\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right) \leqslant\binom{ 2.5}{3.5}
\end{gathered}
$$

Def(Polytope): Bounded palighedron.

polyhedran

polytope.

Def: If $Q \subseteq \mathbb{R}^{n}$ is a set, (coordinate) projection $Q_{k} \subseteq \mathbb{R}^{n-1}$ is

$$
Q_{k}:=\left\{\left(x_{1}, \ldots x_{k-1}, x_{k+1}, \ldots x_{n}\right): x \in Q .\right.
$$

for some $\left.x_{k} \in \mathbb{R}\right\}$.

- (is some way to choose x_{k} to "complete")
- Special care of prajectia to subspace.

Claim: P polyhedron $\Rightarrow P_{k}$ polyhedron.
Proof: Give P_{k} 's inequalities. Method:

Fourier. Motzkin elimination
Let $P=\{x: A x \leqslant b\}$ elia x_{k}

$$
\begin{aligned}
& S_{+}=\left\{i: a_{i k}>0\right\} \\
& 0 S_{-}=\left\{i: a_{i k}<0\right\} \underbrace{k}_{n} \\
& 0 S_{0}=\left\{i: a_{i k}=0\right\} \\
& S_{0,} S_{-}, S_{+} \subseteq\{1, \ldots, m\}
\end{aligned}
$$

E.2. $n=3, m=4, k=2$.

$$
\left.A=\begin{array}{|cc|}
1 & 2 \\
-1 & 3 \\
-1 \\
-4 & -1 \\
0 & 0 \\
\hline
\end{array} \right\rvert\, \begin{aligned}
& S_{+}=\{1,2\} \\
& S_{-}=\{3\} \\
& S_{0}=\{4\}
\end{aligned}
$$

- Any x in P_{k} Satisfies

$$
\text { (*) } \quad a_{i}^{\top} x \leq b_{i}
$$

for all $i \in S_{0}$.
(because these doit involve $x_{k}\left(a_{i k}=0\right)$)

- Can take linear combination of S_{+}, S_{-}ineqs to elimuiate coefficient of x_{k} :
if $\quad i \in S_{+}, l \in S_{-}$,

$$
\left.(* *) \begin{array}{c}
a_{l}^{\top} x \leq b_{l} \quad a_{i}^{\top} x \leq b_{i} \\
a_{i k}\left(a_{l}^{\top} x\right)-a_{l k}\left(a_{i}^{\top} x\right) \leq a_{i k} b_{l} \\
-a_{l k} b_{i}
\end{array}\right]
$$

for all $x \in P_{k}$. coeffof $x_{k} a_{i k} a_{k k}-a_{2 k} a_{i k}$.
Claim: The inequalities
$\left\{*: i \in S_{0}\right.$,

$$
\left\{{ }_{* *}^{*}: i \in S_{+1} l l \in S_{-}\right\}
$$

describe P_{k}. $\left|s_{0}\right|+\left|s_{+}+\left|s_{-}\right|\right.$
$b / c *, * *$ doit involve x, are satisfied for $k \in P_{k}$.
Still Need to show:
for any $\left(x_{1}, \ldots, x_{k-1}, x_{k+1},-x_{n}\right)$
Satisfying (*) and ($* *$) there is x_{k} s.t. $x \in P$. Why?
(i) for $i \in S_{+}, a_{i}^{\top} x \leq b_{i}$ is upper band on x_{k}.

$$
\begin{align*}
& a_{i k} x_{k}+\sum_{j \neq k} a_{i j} x_{j} \leqslant b_{i} \\
\Leftrightarrow & x_{k} \leqslant \frac{b_{i}-\sum_{j k} a_{i j} x_{j}}{a_{i k}} \tag{u}
\end{align*}
$$

(ii) for $l \in S_{\text {, , is lomen }}$ bd.

$$
\begin{align*}
& a_{l k} x_{k}+\sum_{j \not k k} a_{l j} x_{j} \leqslant b_{l} \\
\Leftrightarrow & x_{k} \geqslant \frac{b_{l}-\sum_{j \neq k} a_{l j} x_{j}}{a_{l k}}
\end{align*}
$$

(iii) $\left(*^{*}\right)$ says
every such upper bond (U) on X_{k} is bigger thar foyer bond (L) on X_{k}.

$$
\begin{aligned}
& (u) \leq(l) \Leftrightarrow \\
& \Leftrightarrow \\
& \Leftrightarrow \\
& a_{j k}\left(\frac{b_{l}-\sum_{j \neq k} a_{l j} x_{j}}{a_{l k}} \leqslant \frac{\sum_{j \neq k} a_{l j} x_{j}-\sum_{j \neq k} a_{i j} x_{j}}{a_{l k}}\right) \leq b_{i k}-\sum_{j \neq k} a_{i j} x_{j} \\
& \Leftrightarrow \\
& a_{i k}\left(b_{l}-\sum_{j \neq k} a_{l j} x_{j}\right) \geqslant a_{l k}\left(b_{i}-\sum_{j \neq k} a_{i j} x_{j}\right) \\
& \Leftrightarrow * * .
\end{aligned}
$$

$\Rightarrow 3$ some $x_{k} \in \mathbb{R}$ satisfying all inequalities in S_{-}, S_{+}. I.

Summary of FM slim:
system $A x \leqslant b$ \leadsto new system $\tilde{A} x \leq \tilde{b}$

Properties:
(1) Newinequalities doit involve x_{k}

$$
A=m\left[{ }^{n}\right] \quad \widetilde{A}=\tilde{m}\left[\|_{0}^{n}\right]
$$

(2) Inequalities of $\tilde{A} x \leq \tilde{b}$
are nonnegative linear combinations of these in $A x \leqslant b$.

$$
\tilde{a}_{i}^{\top} x \leq \tilde{b}_{i}=\sum_{j} y_{j}\left(a_{j}^{\top} x \leq b_{i}\right)
$$

for some $y_{5} \geqslant 0$.
(3) $A x \leq b \Rightarrow \tilde{A} x \leq \widetilde{b}$.
(4) $\tilde{A} x \leq \tilde{b} \Rightarrow \exists y$ st.

$$
\begin{gathered}
A\left(x, \ldots, x_{k-1}, y, x_{k+1}, \ldots x_{n}\right) \\
\leqslant b .
\end{gathered}
$$

$A x \leq b$ solvable

$$
(3),(4) \Rightarrow
$$

$$
\tilde{A}_{x} \leq \tilde{5} \text { solvable. }
$$

MORE DEF
Def: for $a^{(1)} \ldots a^{(k)} \in \mathbb{R}^{n}$,
linear combination:

$$
\sum_{i=1}^{k} \lambda_{i} a^{(i)} \quad \lambda_{i} \in \mathbb{R}
$$

affine conchination:

$$
\sum_{i=1}^{k} \lambda_{i} a^{(i)} \sum_{i=1}^{k} \lambda_{i}=1
$$

Conical combination:

$$
\sum_{i=1}^{k} \lambda_{i} a^{(i)} \quad \lambda_{i} \geqslant 0
$$

convex combination :

$$
\sum_{i=1}^{k} \lambda_{i} a^{(i)} \quad \lambda_{i} \geqslant 0, \sum \lambda_{i}=1
$$

(affine + conical)
linear hull: $\operatorname{lin}(S)=$ all linen $\longrightarrow \operatorname{span}(S)$ countinotions combinations
of elements of S.
affine hull: $\operatorname{aff}(S)=11$ affine
conical " cone $(S)=$ " conical

- Canner " conv(S)="convex.

Def (Equiv. def of polffope):
A polytope is the convex lull of finitely man points.
Why equivalent ? $S=\left\{a_{1}^{(1)} \ldots, a^{(u)}\right\}$
$P=\operatorname{conv}(s) \Rightarrow P$ bounded $\in \mathbb{R}^{n}$ polyhedron
(1) P polyhedron: P is projection of polyhedron \widetilde{P} in \mathbb{R}^{n+k} :

$$
\tilde{p}=\left\{\begin{array}{cc}
(\underbrace{x}_{n} \underbrace{\lambda_{1}-\lambda_{k}}_{k}) & \left.\begin{array}{c}
x-\sum_{k} \lambda_{k} a^{(k)}=0 \\
\sum_{k} \lambda_{k}=1 \\
\lambda_{k} \geq 0 \\
x \in \mathbb{R}^{n}
\end{array}\right\}
\end{array}\right\}
$$

project out last k coords. of \widetilde{P} to get P.
we abredy saw: proj. of polyhedron is polyhedron! (Fourier-Motzkin)
(2) Pounded: Convex combos have

$$
\begin{aligned}
& \left\|\Sigma \lambda_{k} a^{(k)}\right\| \leq \sum\left\|\lambda_{k} a^{(k)}\right\| \\
& \leq \lambda_{k}\left\|a^{(k)}\right\| \leq \max _{k}\left\|a^{(k)}\right\| .
\end{aligned}
$$

(E)? Later in notes.

Solvability of Systems of Inequalities
Linear algebra: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$;

$$
\begin{aligned}
& A x=b \text { has no solution } \\
& \Leftrightarrow \exists y \subset \mathbb{R}^{m}: A^{\top} y=0, b^{\top} y \neq 0
\end{aligned}
$$

When? $\operatorname{Col}(A)=\left\{\right.$ possidel $\left.b^{\prime} s^{\prime}\right\}=\operatorname{Nul}\left(A^{\top}\right)^{\perp}$.
A form of duality: y 's obstruct x^{\prime} s.

$$
\Leftrightarrow 0 \neq b^{\top} y=(A x)^{\top} y=x^{\top} A^{\top} y=0 \text {. }
$$

For inequalities:

Theorem (Theorem of the
Alternatives) (TоTA).
$A x \leqslant b$ has no solution

$$
\exists y \in \mathbb{R}^{m}: A^{\top} y=0, b^{\top} y<0, y \geqslant 0
$$

Proof: (\Leftarrow) simplest: Suppose $A x \leqslant b$; then

$$
\begin{aligned}
& 0>b^{\top} y \geqslant \\
&(A x)^{\top} y=x^{\top} A^{\top} y=0 . \\
& A x \leqslant b, y \geqslant 0 .
\end{aligned}
$$

contradiction.
(\Leftrightarrow) Fomier-Motzkin Elim.

- Eliminate all variables - get

$$
\tilde{A} x \leq \tilde{b} \text { unsolvable }
$$

- $\tilde{A}=O$ (man zero matrix)
- $O x \leq \tilde{b}$ is unsolvable. $\Leftrightarrow \quad \exists i$ sot. $\tilde{b}_{i}<0$.
- But then $0^{\top} x \leq b_{i}$ is a nonnegative linear combo:

$$
\begin{aligned}
& \text { ie. } \left.A_{A^{\top} y=0, y \geqslant 0, b^{\top} y<0}^{y_{i}\left(a_{i}^{\top} x\right.} \leqslant b_{i}\right)=\left(0^{\top} x \leqslant b_{i}\right) \\
& b^{\top} y=b_{i}<0
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { Variant (Mixed }=(\leq) \text { Example: } \\
\left.\begin{array}{l}
a_{1}^{\top} x \leq b_{1} \text { has } \\
\begin{array}{l}
a_{2}^{\top} x \leq b_{2} \\
a_{3}^{\top} x=b_{3}
\end{array} \\
\text { Soln }^{\top} \times \Delta b
\end{array} \Leftrightarrow \begin{array}{c}
3 y \text { sit. } \\
A^{\top} y=0, b^{\top} y<0 \\
\text { and } y_{1} \geqslant 0 \\
y_{2} \geq 0 \\
y_{3} \in \mathbb{R}
\end{array}\right] \\
y \square 0
\end{array}\right]
$$

$$
\begin{aligned}
\Delta \leadsto \text { : replace } & =\leadsto \text { unconstrained. } \\
& \leq \leadsto \geqq .
\end{aligned}
$$

Ex: prove variant.
Another variant:
Farkas Lemur: $A x=b$, 1. in solution
$x \geqslant 0$ has ru -
$\Leftrightarrow \exists y$ st. $A^{\top} y \geqslant 0, b^{\top} y<0$.
Ex. prove Forks from TOTA.
Picture: $A=\left[\begin{array}{lll}1 & & 1 \\ a_{1} & \ldots & a_{n} \\ 1 & & 1\end{array}\right]$
es.
b

Conc

$$
A x, x \geqslant 0 \text {. }
$$

separating hyperplane theorem.

LP Duality
Linear "program": masimizing linear function over polyhedron.
(P)

$$
\text { max: } c^{\top} x \text { objective }
$$

$$
\text { subject to: } \underbrace{A x \leq b}_{=}
$$

- X feasible if satisfies constraints.
- If no x is feasible, say (P) infeasible,
- If value $+\infty$, say (P) unbounded. Else (P) bounded.
- Value finite $\Leftrightarrow(P)$ neither infers. nor untended.
- Mary equivalent forms also LP's, e.g. with constraints $\geqslant,=1 \leq$.
e.9. min weight perfect matching $\min \left\{c^{\top} x: A x=b, x \geqslant 0\right\}$.

The Dual of (P) :

$$
\min : b^{\top} y
$$

(D)

$$
\text { subject to: } \begin{gathered}
A^{\top} y=c \\
y \geqslant 0 .
\end{gathered}
$$

- (D) said to be dual, (P) primal.
- Terminology for (D) analogous except (D) unbounded if value is - es
(D) infers if value $+\infty$

Note: primal/dual vars different: if $A \in \mathbb{R}^{m \times n}$, then
n primal vars, m dual vars.

Weak duality: For feasible sols x, y to $(P),(D)$,

$$
c^{\top} x \leq b^{\top} y .
$$

Picture:

Proof: $c^{\top} x=y^{\top} A x \leq y^{\top} b=b^{\top} y$

$$
\begin{array}{cc}
A^{\top} y=c & A_{x}^{\top} \leqslant b \\
y \geqslant 0
\end{array}
$$

The dual was defined this way precisely so this would happen

Cordlary:
(P) unbounded $\Rightarrow(D)$ infeasible
(D) unbounded $\Rightarrow(P)$ infeasible.

Theorem (Strong Duality)
Suppose (P), (D) feasible.
Then optional values are the same.

Many proofs: es.

- voa. Newman minimax theorem
- Fourier -Mot eRin elim. $\begin{gathered}\text { la kex } \\ \text { notes. }\end{gathered}$

TODAY: Proof using TOTA.
IDEA: write down bigger system encoding
(i) x primal feasible
(ii) y dual feasible
(iii) $c^{\top} x \geqslant b^{\top} y$.
use IoTA to show feasible.

Proof: Suppose x^{*} feasible for (P), y^{*} feasible for (D).
For contradiction, assume follows is infeasible.

System:

$$
\begin{align*}
A x & \leq b \tag{i}\\
A^{\top} y & =c \tag{ii}\\
-I y & \leq 0 \\
-c^{\top} x+b^{\top} y & \leq 0 \tag{iii}
\end{align*}
$$

gill S Some pabhedran $\{\tilde{x}: \tilde{A} \tilde{x} \leq \tilde{b}\}$ for

$$
\tilde{x} \in \mathbb{R}^{m+n}
$$

Matrix:

TOTA: $\tilde{A} \tilde{x} \Delta \tilde{b}$ infeasible \Leftrightarrow

$$
\exists \tilde{y} \text { s: } \cdot \frac{\tilde{A}^{\top} \tilde{y}=0, \tilde{y} \square 0, \tilde{b}^{\top} \tilde{y}<0}{(1)}
$$

Writing these out:

$$
\text { * }\left\{\begin{array}{r}
A^{\top} s-v c=0 \\
a t-u+v b=0 \\
b^{\top} s+c^{+} t<0 . \\
s \geqslant 0 \\
u \geqslant 0 \\
v \geqslant 0 .
\end{array}\right\}(3)
$$

Case 1: $v=0$.

$$
\begin{aligned}
& \Rightarrow A^{\top} s=0 \\
& \Rightarrow y^{*}+\alpha s \text { dual teas. }
\end{aligned}
$$

for all $\alpha \geq 0$.

$$
\begin{array}{r}
\left(A^{\top}\left(y^{*}+\alpha s\right)=A^{\top} y^{*}\right. \\
=c)
\end{array}
$$

similarly,

$$
A t \geqslant 0 \quad(A t=u \geqslant 0)
$$

$\Rightarrow x^{*}-\alpha t$ primal feasible. $\alpha \geq 0$
Pry weak duality,

$$
\begin{align*}
c^{\top}\left(x^{*}-\alpha t\right) & \leq b^{\top}\left(y^{*}+\alpha s\right) \\
& \Leftrightarrow \\
c^{\top} x^{*}-b^{\top} y^{*} & \leq \alpha(\underbrace{b^{\top} s+c^{\top} t}_{\alpha}) \tag{3}\\
& \rightarrow+\infty<0
\end{align*}
$$

contradiction!
RMS $\rightarrow-\infty$, LHS fixed.
Case $2 \quad v>0$.

Recall:

$$
\begin{aligned}
& A^{\top} s-v c=0 \\
& A t-u+v b=0 \\
& b^{\top} s+c^{\top} t<0 . \leftarrow D \\
& s \geqslant 0 \\
& u \geqslant 0 \\
& v \geqslant 0 .
\end{aligned}
$$

Divide thrash by v,
Rename $\frac{s}{v} \leftarrow s, \frac{t}{v} \in t, \frac{u}{v} \in u$
get

$$
\begin{aligned}
A^{\top} S-C & =0 \\
A t-u & =-b \\
S^{\top} S+C^{\top} t & <0 \\
s & \geqslant 0 \\
u & \geqslant 0
\end{aligned}
$$

$\Rightarrow S$ dual feasible,
-t primal feasible. $A(-t)=b-u$ $\leq b$

$$
\begin{array}{r}
\Rightarrow \quad c^{\top}(-t) \leqslant b^{\top} s \\
b^{\top} s+c^{\top} t \geqslant 0
\end{array}
$$

contradicts \sum.
Ex. Dual of dual is primal.
Ex. Strong duality holds when either (P) or (D) fleas. i.e. if (P) feas but dual infers, then (P) unbounded. (both values $+\infty$).

Ex: find example where both infeasible \qquad $\xrightarrow[\substack{\text { an } \\ \text { dual }}]{\text { an }}$
What do optimal solutions

$$
x^{*}, y^{*}
$$

look like? look at

$$
c^{\top} x=y^{\top} A x \leq b^{\top} y
$$

equal only if when $\mathbb{A} \lambda_{i}<b_{i}, y_{i}=0$.
Theorem (Complementary Slackness)
Suppose x primal fleas., y dual fleas.

Then

$$
\begin{array}{ll}
x & \text { optimum in }(P) \\
y & \text { optimum in }(D)
\end{array}
$$

$\forall i$ either $y_{i}=0$
or $(A X)_{i}=b_{i}$ or both.

Simplex method:

Doesit provaldy rem in polynomial time.

There are poly-tine algorthis.

- ellipsoid
- interior point methods.

